
SEL-81-305SP1

Ada Developers' Supplement
to the

Recommended Approach

NOVEMBER 1993

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

SOFTWARE ENGINEERING LABORATORY SERIES

Ada Developers’ Supplement to
the

Recommended Approach

OCTOBER 1993

iii

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by
the National Aeronautics and Space Administration/Goddard Space Flight Center
(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL
was created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering
Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effects of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful
development practices. The activities, findings, and recommendations of the SEL
are recorded in the Software Engineering Laboratory Series, a continuing series of
reports that includes this document.

The primary authors of this document are Rush Kester and Linda Landis of
Computer Sciences Corporation.

Single copies of this document can be obtained by writing to

Software Engineering Branch
Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

ACKNOWLEDGMENTS

The recommendations that appear in this document were formulated by the Ada
Process Working Group (APWG). The members of the APWG — experienced
Ada developers from NASA/GSFC and CSC — met regularly from October 1992
to January 1993 to discuss and resolve issues of concern to Ada projects in the
flight dynamics environment of NASA/GSFC. The group reached consensus on a
number of guidelines, which have been collected into the present volume.

Ada Process Working Group

Eric Booth, CSC
Jerry Doland, CSC
Gerry Heller, CSC

Ed Joyce, CSC
Rush Kester, CSC

Warren Miller, CSC
Wendy Shoan, GSFC
Michael Stark, GSFC
Warren Steger, CSC

v

ABSTRACT

This document is a collection of guidelines for programmers and managers who are
responsible for the development of flight dynamics applications in Ada. It is
intended to be used in conjunction with the Recommended Approach to Software
Development (SEL-81-305), which describes the software development life cycle,
its products, reviews, methods, tools, and measures. The Ada Developers’
Supplement provides additional detail on such topics as reuse, object-oriented
analysis, and object-oriented design.

vii

CONTENTS

Introduction . 1

The Software Development Life Cycle . 3

Tailoring the Life Cycle for High-Reuse Projects .. 3

The Requirements Definition and Requirements Analysis Phases 5

Methods and Tools .. 5

Object-Oriented Analysis .. 5

Products .. 6

Software Development/Management Plan .. 6

The Preliminary Design and Detailed Design Phases . 7

Methods and Tools .. 7

Reuse Verification .. 7

Prototyping ... 8

Object-Oriented Design ... 9

Guidelines for Preliminary Design ... 11

Identifying Programs and Ada Tasks .. 12

Methods for Documenting External Interfaces .. 13

Object Dependency Diagrams ... 13

Object Composition Diagrams ... 15

Task Interaction Diagrams ... 17

Object Prologs .. 18

Object PDL ... 19

Design Walk-throughs and Inspections .. 20

Products .. 21

Preliminary Design Report . 21

Detailed Design Document .. 22

Build Plans .. 22

The Implementation Phase . 23

Methods and Tools .. 23

Coding Rules of Thumb ... 23

Internal Commentary Guidelines . 24

Performance Guidelines .. 24

The System and Acceptance Testing Phases . 27

Products .. 27

Software Reuser’s Guide .. 27

Acronymns . 29

References . 31

ix

LIST OF ILLUSTRATIONS

Figure Page

1 Problem and Solution Domains 5
2 System Context Diagram 10
3 Top-Level Object Diagram 10
4 Graphic Icons Used in Booch’s Notation 14
5 Graphic Icons Used in the GOOD Notation 14
6 GOOD Object Dependency Diagram 15
7 Additional GOOD Graphic Icons for Use in Object

Composition Diagrams
16

8 Object Composition Diagram Using the GOOD Notation 16
9 Task Interaction Diagram 17

LIST OF TABLES

Table Page

1 Prolog/Header Information for Each Type of Ada Unit 18
2 Ada Efficiency Guidelines 26

 Introduction

1

INTRODUCTION

The Ada Developers’ Supplement to the Recommended Approach is a collection of
guidelines for the development of flight dynamics applications in Ada. These
guidelines represent the “best current practice” of Ada software developers working
on projects monitored by the Software Engineering Laboratory (SEL). They were
formulated by the members of the Ada Process Working Group (APWG), a
committee composed of experienced Ada developers from the Software Engineering
Branch of the National Aeronautics and Space Administration/Goddard Space
Flight Center (NASA/GSFC) and the Software Engineering Operation of Computer
Sciences Corporation (CSC).

The recommendations in this document are intended to supplement the guidance
provided in the SEL’s Recommended Approach to Software Development
(Reference 1). The Recommended Approach describes the software development
life cycle, its products, reviews, methods, tools, and measures. This Ada
Developers’ Supplement provides additional detail, primarily in the areas of reuse
and object-oriented approaches, that will further assist managers and developers on
Ada projects. It does not attempt to be a comprehensive treatment of either the life
cycle or the methodologies of Ada software development.

The document loosely follows the order and organization of the Recommended
Approach, although material that relates to consecutive sections in the
Recommended Approach has been consolidated. Consequently, the current
document contains a single section containing information applicable to both
requirements definition and requirements analysis, another section for preliminary
and detailed design, a section for implementation, and a final section for system and
acceptance testing.

To use this Supplement effectively, the reader should be familiar with the
Recommended Approach, trained in the Ada language, and conversant with object-
oriented analysis/design.

 Life Cycle

3

SUPPLEMENT TO SECTION 2 OF
THE RECOMMENDED APPROACH

THE SOFTWARE DEVELOPMENT LIFE CYCLE

TAILORING THE LIFE CYCLE FOR HIGH-REUSE PROJECTS

Ada projects that reuse their software architectures and the majority of their source
code should use a streamlined life cycle tailored for high-reuse systems. The key
areas in which such a life cycle differs from the standard life cycle documented in
the Recommended Approach are

• During the requirements analysis phase, the development team uses
prototyping to verify that reused code meets project requirements, especially
requirements for performance.

• On projects in which the system architecture is already established by the
reused system, a separate preliminary design phase is unnecessary.
Instead, all design activities take place during a single design phase.

• During the design phase, the development team holds walkthroughs with
the analysis team to cover new and modified components. Walkthroughs
need not cover components that will be used verbatim.

• The design of the reused system may be documented more accurately in its
system description than in its design document, particularly if the design
document was not updated to reflect modifications made late in the life
cycle. In such a case, the development team reuses relevant portions of the
existing system description to prepare a preliminary system description as
the baseline design document for the new system. An appendix is added to
this preliminary system description to provide an overview of system
operations.

• The development team holds a combined preliminary design review
(PDR)/critical design review (CDR) to formally review and approve the
design. The team does not present the entire system design at this review.
Instead, presenters focus on the differences between the design of the
current system and that of the reused system.

• During unit and integration testing, developers concentrate on new and
modified components.

Ada Developers’ Supplement

• Test teams conduct system/acceptance testing for the entire system, just as
they would if the components were newly developed.

Requirements Definition and Analysis

5

SUPPLEMENT TO SECTIONS 3 AND 4 OF
THE RECOMMENDED APPROACH

THE REQUIREMENTS DEFINITION
AND

REQUIREMENTS ANALYSIS PHASES

METHODS AND TOOLS

The following paragraphs extend the discussion of object-oriented analysis that
appears in Section 3 of the Recommended Approach.

Object-Oriented Analysis

The purpose of object-oriented analysis is to identify and understand the objects in
the problem domain, i.e., the problem space that is rooted in the real world. In the
flight dynamics environment, the problem domain is described in the requirements
document for the system. The solution domain is implemented by a combination
of software and hardware constituting the actual system. (The solution domain is
the focus of object-oriented design.) Figure 1 illustrates this concept.

ResultsData Problem space

Real-world
objects and
operations

Real-world
objects

Programming language
objects and operations Output data

Computer algorithm

Solution space

Real-world algorithm

The programmer's
representation of
the problem

Human

interpretation
of results

Figure 1. Problem and Solution Domains
 [Adapted from Figure 5-1 of G. Booch,

Software Engineering With Ada (Reference 2)]

Ada Developers’ Supplement

6

The process of object-oriented analysis consists of the following steps:

1. Identify the objects in the problem domain.

2. Identify the attributes of each object (e.g., input, output, or state
information).

3. Identify the relationships between objects.

4. Map functions and operations to objects.

5. Optionally, specify an object's behavior via behavior modeling or state-
transition modeling.

6. Optionally, group objects into
abstract classes (e.g., sensors or
environmental factors).

During the design phase(s), developers
identify the objects that are needed in
the software solution to the problems
posed in the requirements. Steps 2
through 6 are then repeated for these
solution-domain objects.

PRODUCTS

Software Development/Management Plan (SDMP)

Additional information should be included in the SDMP of an Ada project, as
follows:

• In the section entitled Build Strategy (Item 3.6), discuss how Ada compila-
tion dependencies affect the build plan.

• Under Configuration Management (Item 5.3), address the way in which
Ada libraries will be kept synchronized with source code (i.e., CMS)
libraries.

REFERENCE

For a complete treatment of
object-oriented analysis, see
P. Coad and E. Yourdon's,
Object-Oriented Analysis

(Reference 3).

Design

7

SUPPLEMENT TO SECTIONS 5 AND 6 OF
THE RECOMMENDED APPROACH

THE PRELIMINARY DESIGN
AND

DETAILED DESIGN PHASES

For an Ada system with many new components, more effort is usually expended in
the preliminary design phase than is spent during the preliminary design of a
comparable FORTRAN system. The Ada development team holds the PDR only
after the software architecture has been defined, i.e., after all packages and
subprograms in the problem domain have been described. Consequently, the PDR
is usually held later than it would be on a FORTRAN project, and a larger
percentage of the total design work is completed prior to PDR.

METHODS AND TOOLS

The guidelines in this section primarily address the methods and tools that Ada
developers use to create an object-oriented design. They include methods for
determining the optimum design as well as methods for documenting the design,
such as object diagrams, prologs, and program design language (PDL).

Reuse Verification

As a part of the process of reuse verification (described in Section 5 of the
Recommended Approach), the development team must thoroughly review any
software components that are slated for reuse to determine the extent to which
project dependencies are parameterized. Developers examine relevant portions of
the system description, the requirements and specifications, and any test drivers
identified in the system/acceptance test plans. Where project dependencies are
parameterized, the development team identifies the effort needed to supply their
project's specific parameters.

If software components are being imported from a different computing environment
or from outside the flight dynamics environment, the team should assess potential
portability problems by attempting to compile and execute the components. Use of
implementation-specific pragmas, references to missing source files, or references
to machine-specific run-time library routines are easily identified when the software
is compiled and linked. Missing data files and subtle differences in implementation-

Ada Developers’ Supplement

8

defined features, such as input/output,
tasking, or arithmetic precision, may not
be evident until the software is executed.

If the reuse candidates don't completely
satisfy the project's needs, the
development team must decide which
components they will

• reuse, making modifications that
are specific to the current project;

• reuse, making modifications that
generalize or parameterize the
component(s) for future as well as
current reuse; or

• design and code newly.

The development team must make these decisions based on the priorities of their
particular project (e.g., low cost, reusability in future systems, or high run-time
performance). The team must evaluate the reuse possibilities and weigh the effects
of various tradeoffs in view of these project drivers. When modifications are
necessary to enable or improve reuse, the development team's estimates of the
effort required should be specified in the SDMP.

Where no candidates for reuse exist, the development and management teams
should consider making the new components reusable on future projects. To
accomplish this, the team performs a limited domain analysis, identifying common
elements of the software and isolating and parameterizing elements that vary from
project to project.

Prototyping

In the flight dynamics environment, prototyping is used to mitigate risks related to
new technology, to resolve requirements issues, and to model system performance.
During preliminary design, the development team should use prototyping to assess
potential performance problems. In addition, the team may use prototypes to
evaluate tradeoffs between design alternatives being considered. These prototypes
allow the development team to gain experience in the environment and in the
application or Ada language features, which generally results in a better system
design.

In a stable computing environment and application domain (where a prior project
serves as a prototype), little or no prototyping of new technology is usually
necessary. However, when developers anticipate significant differences in the

During reuse verification,
developers should submit
questions to the requirements
definition team. The
requirements definition team
can help to identify
commonalities between the
current project's requirements
and those of other past,
present, or future projects.

NOTE

Design

9

environment or application, they should use prototyping to assess and/or reduce
technical risks. Often these prototypes are planned in earlier phases but
implemented during preliminary design.

Object-Oriented Design

Preliminary design starts with the conceptual object model developed during the
requirements analysis phase. This conceptual model identified problem-domain
objects and their attributes, defined operations on those objects, and established the
interfaces between them. During preliminary and detailed design, the development
team maps these objects to Ada units and specifies the approach to be taken in
implementing them.

In the preliminary design of an Ada system, the development team identifies all
packages and subprograms that address elements of the problem domain. This
includes all high-level objects needed to implement the system capabilities, the
functions and procedures affecting these objects, externally visible data, and all of
the object’s interfaces and dependencies. The development team defers
identification of the lower-level components that implement solution-domain objects
or utilities until the detailed design phase. However, the development team must
define the overall system architecture before the preliminary design can be
considered complete.

The development team documents the preliminary design in the preliminary design
report, using a combination of graphical diagrams, narrative text, Ada specification
code, PDL, and descriptive commentary. At the highest level, the preliminary
design is depicted in a system context diagram and accompanying narrative text.
The context diagram shows the external interfaces to the system and the programs
that make up the system; arrows indicate the flow of data to and from the system.
The context diagram is accompanied by narrative text that describes both the
programs and their external interfaces. An example of a context diagram is shown
in Figure 2.

The development team then refines each program into top-level subsystems. These
top-level subsystems represent the highest level of objects in the system. A top-
level object diagram is used to depict these objects and their interdependencies, as
shown in Figure 3. Developers continue to refine problem-domain objects until all
subsystems, all packages, and all visible subprograms within those subsystems
have been identified.

Ada Developers’ Supplement

10

Telemetry
Simulator

Plots

Engineering
Data Sets

Processed
Engineering
Data Sets

Plot Data
Files

Simulated
Telemetry

Plot
Generator

Simulation
Parameters

Figure 2. System Context Diagram

Simulator
Main Program

Simulator
Subsystem

Telemetry
Subsystem

Database
Subsystem

Environment
Subsystem

Spacecraft
Subsystem

Utilities
Subsystem

Figure 3. Top-Level Object Diagram

Design

11

Guidelines for Preliminary Design

To reiterate, the primary goal of the preliminary design phase is to translate the
conceptual object model that was developed during the requirements analysis phase
into Ada units. Ada units can take a variety of forms: packages, procedures,
functions, or their generic counterparts. Related library units can be grouped
together into logical subsystems to simplify documentation. Library units can also
contain nested units, i.e., regular and generic packages, procedures, and functions,
as well as tasks.

The development team’s selection of object groupings and Ada units will have a
significant impact on the ease with which the system can be implemented,
maintained, and reused. In some cases, as described in the Ada Efficiency Guide
(Reference 4), these choices impact the performance of the system. Because of
this, the development team should examine alternative mappings and review the
advantages and disadvantages of each before settling on a preliminary design.

The preliminary design chosen must meet project requirements and satisfy project
drivers. Developers must always keep in mind their project’s unique set of
priorities, even as they strive to create a design that is modular, reusable,
understandable, testable, and maintainable. No hard and fast rules can be used to
achieve the necessary balance, although the following rules of thumb apply. Note
that the first four of these rules apply to any software design, whether functionally-
or object-oriented.

• The higher the internal cohesion and the lower the external coupling, the
better the modularity.

• The better the modularity, the easier a system is to understand, implement,
test, maintain, and reuse.

• The easier a system is to understand, the more reliably it can be built and the
easier it is to use.

• A software structure with strictly top-down dependencies is easier to
develop, maintain, and reuse than one that has bottom-up or sibling
dependencies.

• Objects are usually implemented as Ada packages, because packages allow
the grouping of data types and multiple operations as a single Ada library
unit.

Ada Developers’ Supplement

12

• Use of Ada generic units can provide some of the design flexibility and
reuse potential of object-oriented classes. With this approach, the generic
template defines those properties common to (and inherited by) all objects in
the class, and generic parameters (especially generic subprogram
parameters) define those properties unique to specific objects in the class.

• Generic Ada units, parameterized to reflect variability in the application
domain, are more reusable than their non-generic equivalents. However,
generic Ada units are more abstract and are harder to understand than their
non-generic equivalents. Generic units require additional in-line
commentary and external documentation that explains how to reuse them.

Identifying Programs and Ada Tasks

Ada systems are made up of one or more executable programs. Historically, Ada
systems such as telemetry or dynamics simulators have been designed as a single
program. However, as larger applications are developed in the future, this may no
longer be the case. Consider defining separate executable programs when one or
more of the following conditions exist:

• Functions must execute on different computer processors.

• Functions execute at different times in the operational scenario.

• A checkpoint is required between functions for manual output validation,
input editing or restart/recovery. (Functions before the checkpoint should be
in a separate program from those that follow.)

• Some functions (or their associated data sets) require restricted access
controls. (Isolate the restricted functions/data sets.)

• Concurrency is required but vendor interface routines do not support
concurrent execution of Ada tasks.

Within Ada programs, one can achieve concurrently executing control flows by use
of Ada tasks. Ada tasks are used for one or more of the following reasons:

• To manage multiple, asynchronous I/O devices

• To model real-world, concurrent processes

Design

13

• To synchronize concurrent access to state data (Note that, in Ada 9x,
protected types replace tasks as a mechanism for locking and unlocking state
data.)

Methods for Documenting External Interfaces

Typically, the first objects that the development team specifies with Ada code are
the interfaces to external systems. It is good practice to document these interfaces
by declaring the Ada records that correspond to the interface data. When the
interface mechanism is a file, describe the file's organization and access protocol.
Encapsulate the record declaration and access routines in the package that
implements the interface object.

When the interface is to non-Ada programs, to programs generated by a different
Ada compiler, or to programs executing on a different type of computer, it is
generally advisable to include Ada representation clauses to completely specify the
record layout. It is up to the development team, however, to decide whether the
physical representations should be specified during preliminary design or deferred
to a later phase.

Object Dependency Diagrams

An object dependency diagram shows the WITHing dependencies among each
program's Ada library units, i.e., the main procedure, packages, and standalone
subprograms. The dependencies of the specification, body, and any subunits for a
given Ada library unit are combined and the combined unit is shown as a single
icon.

Each project should select a graphic notation for object diagrams based on available
tools, project needs, and development team preferences, and should use the selected
notation consistently throughout the life of the project. The SEL recommends the
GOOD notation (Reference 6), although the notation of Grady Booch (Reference 5)
is an accepted alternative, since it is supported by a number of CASE tools. The
icons for these notations are shown in Figures 4 and 5.

In order to provide the best overview of a program's structure, as many units as is
practical should be shown on a single page. Where not all units can be shown,
units that contribute little to an understanding of the program's structure may be
omitted from the diagram (although they should at least be listed). Alternatively,
the diagram may be continued on a subsequent page. An example of an object
dependency diagram is given in Figure 6.

Ada Developers’ Supplement

14

Figure 4. Graphic Icons Used in Booch’s Notation

Figure 5. Graphic Icons Used in the GOOD Notation

Subsystem - a group of logically
related packages and subprograms

Package - the specification, body,
and any subunits of a non-generic
Ada package

Subprogram - the specification
and/or body of a non-generic
Ada procedure or function

Task - the body of an
Ada task

Generic Subprogram - the
specification and/or body of a
generic Ada procedure or function

Generic Package - the
specification, body, and any
subunits of a generic Ada package

Dependency - an Ada WITHing
relationship

Subsystem - a group of logically
related packages and subprograms

Package - the specification, body,
and any subunits of a generic or
non-generic Ada package

Subprogram - the specification
and/or body of a generic or
non-generic Ada procedure or
function

Task - the body of an
Ada task

Dependency - an Ada WITHing
relationship

Generic Instantiation - an Ada
WITHing and NEWrelationship

Class Packages - a group of
related packages with similar
interfaces and behavior

Class Subprograms - a group of
related subprogram with similar
interfaces and behavior

Design

15

Figure 6. GOOD Object Dependency Diagram

Object Composition Diagrams

An object composition diagram shows
the internal structure of a single Ada
library unit as well as its external
interfaces. In addition to the icons
shown in Figure 5, the GOOD notation
provides the icons shown in Figure 7.
An example of an object composition
diagram that uses this notation is shown
in Figure 8.

Telemetry_
Simulator

Scheduler

Simulation_
Parameters

Engineering
_Directory

Attitude_
History_
File

Minor_
Frame

Telemetry
_Record

Simulation_
Database

Satellite_
Ephemeris

Spacecraft
_Attitude

Generic_
Hardware

hardware
_packages

generic
model
hardware

environmental
models

The effort required to create and
maintain object diagrams —
either manually or with a draw-
ing tool — can outweigh their
benefit. If a CASE tool that
supports object diagrams is
unavailable, use textual, object-
composition lists from the Ada
Compilation System or the VAX
Source Code Analyzer instead of
object composition diagrams.

NOTE

Ada Developers’ Supplement

16

Figure 7. Additional GOOD Graphic Icons for Use in Object
Composition Diagrams

Package - the beginning and
ending boundaries of an Ada
package whose composition
is shown within

Imported Types - external
packages containing key type
declarations upon which this
package depends

Subprogram Parameter - a
procedure or function used to
instantiate the generic package
within which it is shown

State Data - variable values
which represent the state of
the object within which it is
shown

Exported Operations -
procedures, functions or tasks
declared within the package that
are visible to external units

Imported Operations -
procedures, functions or tasks
declared externally upon which
this unit depends

Generic_Example

 End Generic_Example

State data

Hidden_
Subunit

Get Put

Simulate

Model

Open Close

Output

Imported_Types

Generic_Output

Figure 8. Object Composition Diagram Using the GOOD Notation

Design

17

Task Interaction Diagrams

The purpose of task interaction diagrams
is to highlight any concurrency and
synchronization in the system design. A
task interaction diagram shows the task
control hierarchy among all tasks, the
main program, and any asynchronous
devices. All possible rendezvous are
depicted as arrows from the initiating
task to the accepting task.

The task interaction diagram uses the same icons as the object dependency diagram
shown previously, with the addition of task entry names on the rendezvous
dependency arrows. An example of a task interaction diagram is shown in
Figure 9. Narrative text should be supplied along with the diagram to describe the
interactions among tasks, devices, and the main program.

Figure 9. Task Interaction Diagram

The inclusion of many object
composition diagrams in the
design documentation can
obscure key aspects of the
design. Use object composition
diagrams only for those library
units that have a complex
internal structure, and consider
putting them in an appendix.

NOTE

Dynamics_
Simulator

Display_
Controller.
Driver

Display_
Controller.
Read

Status_
Handler.
Status

Start_Processing or
Exit_Display_Controller

Notify_Simulation_Stopped

Terminal
Keyboard
 AST

Input_Detected
Get_Key_Stroke
& Finished Set_Status

 & Stop

Wait_To_Start,
Stop &
Finished

Main Task

Ada Developers’ Supplement

18

Object Prologs

Package and subprogram specifications serve as prologs in Ada systems and are
generated for program elements that represent objects in the application domain.
The specifications contain comments that provide an object-level description
identifying the object and its purpose. The visible data types and operations for the
object are declared in Ada code and supplemented by descriptive comments. In
addition, the specification contains declarations and descriptive comments for any
exceptions that may result from each of its operations or from package initialization
code.

All prolog (a.k.a. “header”) information is placed at the beginning of the source file
before any Ada code (including context clauses, generic parameters, and unit type).
The modification history for the component must be included in the prolog/header
of the source file, but is not required in the subunits included in that source file.

All prolog/header information relevant to the user also should be included in the
specification. Prolog/header information relevant to the implementer or maintainer
should be put into the body or subunit as needed.

Table 1 shows the prolog fields for each unit type. Prolog fields are entered in the
order shown in the table. For example, the following fields constitute the prolog of
a package specification: <identification>, Purpose, Initialization Exceptions,
Notes, and Modifications. Information is required for the keywords Purpose and
Modifications, optional for the placeholder <identification>, and optional for the
keywords Exceptions and Notes.

Table 1. Prolog/Header Information for Each Type of Ada Unit

unit type
prolog field Package

spec
Package

body
Procedure

or
Function

spec.

Procedure
or

Function
body

Task
spec

Each
task
entry

Task
body

<identification> x x x x x x
Purpose * x x x x
Initialization
Exceptions

x x

Exceptions x x
Notes x x x x x x x
Modifications * x x x x x x

Note: Information must be supplied in fields labeled with an asterisk.

Design

19

The Modifications field should include the author or maintainer’s name,
organization, the modification date, and a brief description of the modification. If
the software unit is new, the modification field should contain the words “initial
version.”

Developers can insert information in the prolog (under Notes) to assist in tracing the
unit back to requirements or specifications. However, references to mission-
specific requirements/specifications should not be included in generic components.

Developers should use external documentation to facilitate software reuse, rather
than providing additional information in the unit prolog. Reuse information can be
included in the design document, system description, and user’s guide.
Object PDL

During preliminary design, the development team generates high-level PDL for
solution-domain objects. The purpose of the PDL produced during preliminary
design is to communicate (along with design diagrams) the overall architecture or
structure of the solution-domain objects within the system being implemented. As
such, the important elements of PDL are data and control dependencies, which are
represented by Ada WITH statements, and interface specifications, which are
represented by function and procedure declarations for visible operations. Lower-
level PDL that describes algorithms and control logic is usually deferred to the
detailed design phase.

Ada specifications and PDL are generated using templates and a language-sensitive
editor and may be compiled to ensure completeness, consistency, and syntactic
correctness. Note, however, that compilation of Ada PDL is not mandatory during
the preliminary or detailed design phases.

On projects developed in Ada, PDL should include dependency information (i.e.,
WITHs) as well as any control information (e.g., if, loop, case, calls) that is
significant to implementation. Either Ada statements or commentary may be used
as PDL. PDL should be generated for the main program, any tasks, and for those
units called by either. It should include declaration of types and variables that
define an object's state as well as package initialization logic, if any.

Standards for PDL that are appropriate for FORTRAN components may need to be
modified for Ada projects. Always use Ada control structures in PDL rather than
such non-Ada PDL statements as REPEAT UNTIL.

The identification of units that require PDL in the preliminary design phase may be
left to the discretion of the development team. In addition, the development team

Ada Developers’ Supplement

20

may decide to mitigate risk by requiring more detailed PDL for certain units (e.g.,
drivers, performance-critical units, or units implementing complex algorithms).

Design Walk-throughs and Inspections

Ada projects use design walk-throughs and inspections as described in Sections 5
and 6 of the Recommended Approach. Because the design process is highly
iterative, the development team holds many informal peer reviews of various design
alternatives. Early peer reviews focus on selecting a set of Ada library units that
implement the required objects while achieving a good balance among software
engineering goals and project drivers. Later peer reviews focus on individual Ada
library units and the completeness and consistency of the operations and data types
they provide. Once an informal consensus has been reached for a given set of
design diagrams or library units, they are formally inspected and certified.

Where reviewers are expected who are new to the object-oriented design paradigm
or its notation, the development team should prepare a brief overview of these
concepts before their first peer review. This information should be presented to all
unfamiliar reviewers before the actual peer review materials are distributed.

The design inspection checklist shown in Figure 6-3 of the Recommended
Approach should be expanded to include questions intended to isolate any
performance problems that may be inherent in the design. For Ada systems, these
questions should refer to the efficiency guidelines that appear in the implementation
section of this document.

The following additional inspection criteria should be applied to object diagrams:

• Does the object diagram follow the notation and style conventions adopted by
the project?

• Are all external references shown?

Design

21

PRODUCTS

Preliminary Design Report

The primary product of the preliminary design phase of an Ada project is the
system architecture, as documented in the preliminary design report. The
components of this product are

1. Object dependency diagrams that show the system composition and
dependencies. These diagrams should include those objects needed to depict
the high-level architecture of the system.

2. Ada specifications for units depicted in object dependency diagrams.

3. High-level object data-flow diagrams (DFDs) to provide the context for
major subsystems.

4. Object composition diagrams that show the internal structure of Ada
library units. Alternatively, the structure of these units may be documented
using textual lists such as those produced by the Ada Compilation System
(Reference 7) command SHOW PROGRAM or by VAX Source Code
Analyzer (Reference 8) command FIND CONTAINED_BY.

5. Control diagrams that depict the control hierarchy for the components
comprising each major thread of control in the system, and the sequence of
component execution. Control diagrams should not introduce objects not
depicted on object dependency diagrams, but may show internal components
of these objects (i.e., functions or procedures). No standard has been
defined for control diagrams, but they are analogous to annotated structure
charts, thread diagrams, state transition diagrams, Petri net diagrams, or
textual call trees.

6. PDL, using Ada code and commentary, for the main procedure, any tasks,
and the units that they call. During preliminary design, PDL is usually
confined to units that appear on object dependency diagrams

7. Task interaction diagrams that show the interfaces between the main
procedure and any tasks.

If multiple units share the same architecture (i.e., interface and structure), the
development team may elect to produce object diagrams and Ada specifications for
only one of the units, as a representative example. Each example object diagram
should include a reference to all other, similar units.

Ada Developers’ Supplement

22

Detailed Design Document

The primary product of the detailed design phase is the completed software design,
as documented in the detailed design document. The design includes

1. Updated object dependency diagrams, object DFDs, and control
diagrams

2. Compiled Ada specifications for all units

3. PDL for all units (Note that compilation of PDL is not mandatory.)

Build Plans

During the detailed design phase, the management team completes the build plan
that will be used to implement the design. Section 6 of the Recommended
Approach describes the contents of the build plan. Because compilation
dependencies will affect the order in which components can be implemented, these
dependencies must be addressed in the build plan for an Ada project. The plan
should also identify the units in each build that will be coded only as stubs.

NOTE

On high-reuse projects, a
draft system description can
be produced in lieu of a
detailed design document.

Implementation

23

SUPPLEMENT TO SECTION 7 OF
THE RECOMMENDED APPROACH

THE IMPLEMENTATION PHASE

METHODS AND TOOLS

The experience of developers on Ada projects in the flight dynamics environment
has resulted in a number of additional guidelines for the implementation phase.
These include rules of thumb for coding, guidance for comments within code, and
performance guidelines.

Coding Rules of Thumb

• Coding, reviewing, and baselining Ada unit specifications from the bottom
up will require less recompilation than the same activities will require if they
are performed top down.

• Coding and testing Ada unit bodies in a top-down fashion — to whatever
depth is needed to achieve a given system capability — requires less rework
and necessitates development of fewer nondeliverable drivers than coding
from the bottom up. Rather than commenting out references within the
units being implemented, code the Ada units immediately below the target
level as stubs.

• The larger the unit, the harder it is to understand, develop, and maintain.
However, better performance optimizations can be achieved by most
compilers on a single, large file of Ada units than can be achieved on a
collection of separately compiled, smaller Ada units that implement the same
capabilities. Weigh other project drivers against the need to improve
performance and determine file sizes accordingly.

In the flight dynamics
environment, all Ada
specifications are generally
coded and compiled before
coding of Ada bodies is begun.

NOTE

Ada Developers’ Supplement

24

Internal Commentary Guidelines

• Comments should not be redundant with code.

• References should be made to external documents rather than including
tutorial or background information as commentary.

• Comments should be used to explain non-obvious code, such as code that
has been reorganized for performance reasons.

• Comments should be used to flag deviations from standards or
specifications.

Performance Guidelines

The most critical factor for system performance is “having the design and
implementation fit the requirements.” Design and implementation decisions should
always be reevaluated whenever system requirements are modified.

If performance is critical within a particular thread or path in the system, then the
development team may have to compromise on engineering goals, such as
readability and maintainability, in order to improve performance within the thread.
Deviations from good software engineering practice should be kept to an absolute
mininum, however, and isolated to the units that need tuning.

To improve performance, developers should focus their attention on

• critical code segments (i.e., those executed many times, such as within
loops)

• features that are unique to Ada, such as array slices and exceptions
(Unfamiliarity with these features can cause developers to use them in ways
that adversely affect performance.)

Developers should avoid the use of exceptions for “non-error” conditions; error
conditions are defined to be those with a low probability of occurrence during a
“nominal” run. Additionally, developers should review the use of pragma INLINE
for

• consistency with compiler vendor’s rules for in-line code
• impact on unit dependencies

Code segments that are called frequently (dynamic references) from only a few
places (static references) are good candidates for INLINE.

Implementation

25

Table 2 is a summary of key efficiency guidelines drawn from four sources:

• SEL Ada Performance Study Report (Reference 9)
• Ada Efficiency Guide (Reference 4)
• Ada Style Guide (Reference 10)
• VAX Ada Run-Time Reference Manual (Reference 11)

The rationale for each guideline and a more detailed exposition are provided in the
listed reference.

Note that these efficiency guidelines are designed for micro-optimization. That is,
they should be applied only to the pieces of the code that need to be optimized, and
only when performance is clearly an issue. Also note that some of the guidelines
on this list are VAX compiler dependent and may be of limited use in a different
environment.

Ada Developers’ Supplement

26

Table 2
Ada Efficiency Guidelines

• Give constrained types preference over unconstrained types. (Reference 9)

• Give static expressions preference over dynamic expressions. (References 9,
10)

• Unroll small loops in frequently used subprograms. (Reference 4)

• Use a procedure with an IN OUT parameter in lieu of a function that does the
same thing. (References 4, 11)

• Change loop-invariant or frequently accessed invariant variables and
expressions to constants in locally declared blocks. (Reference 11)

• Use scalar type operations instead of composite type operations.
(Reference 11)

• Build values in place instead of within aggregate expressions. (Reference 11)

• Use RENAMES to remove constraint checks from loops. (Reference 11)

• Use attributes to remove constraint checks from loops. (Reference 11)

• Use records to pass multiple parameters quickly. (Reference 11)

• Use pragma INLINE for small or frequently called subprograms. (References
4, 9, 10, 11)

• Use generic value parameters to allow reusers to choose between accuracy and
efficiency. (References 4, 9, 11)

• Process multidimensional arrays in row-major order. (Reference 9)

• Use short-circuit control forms or nested IF statements when boolean
expressions contain function calls that have no side effects. (Reference 9)

System and Acceptance Testing

27

SUPPLEMENT TO SECTIONS 8 AND 9 OF
THE RECOMMENDED APPROACH

THE SYSTEM AND
ACCEPTANCE TESTING PHASES

Even on Ada systems with high reuse, the test team must verify the correct
execution of the entire system, not just the new or modified components of the
system. Consequently, testing an Ada system is substantially the same as testing a
system developed in FORTRAN. The same methods and tools described in Section
8 of the Recommended Approach apply.

PRODUCTS

Software Reuser’s Guide

A software reuser’s guide is produced during the system testing phase to
accompany an Ada library unit that is to be placed in a reuseable software library
(RSL). Because of the effort required to create and maintain understandable and
reliable documentation, the development team should create a software reuser’s
guide only for reusable software with a low probability of change or a high
frequency of reuse.

The software reuser’s guide is organized
by library unit. For each library unit, it
includes

• an overview of the library unit;
• a description of each element

(e.g., subprogram, generic
parameters, types);

• a copy of the library unit’s
specification; and

• examples of its use.

The overview presents the purpose of the library unit, describes key concepts, and
highlights aspects critical to understanding the unit. This section also describes
interactions, dependencies, and limitations significant to the unit’s use. Where
appropriate, this section could include graphical representations and refer to
background material.

The task of creating a
reuser's guide is normally
allocated to the team that is
responsible for creating and
maintaining the RSL.

NOTE

Ada Developers’ Supplement

28

Each element of the library unit is described in a separate subsection. The elements
are presented in a logical order, such as instantiation, elaboration exceptions, and
nested subunits, but the order may differ from that in the specification. The
subsection for each element describes what the element does, how to use it, and any
exceptions that might result. Private or hidden parts not significant to a user’s
understanding need not be described. Usage examples can be included along with
the description of library unit elements or following the copy of the library unit’s
specification. For an example of a description of a reusable library unit, see the
description of package TEXT_IO in the Reference Manual for the Ada
Programming Language (Reference 12).

Acronyms

29

ACRONYMS

APWG Ada Process Working Group

CASE computer-aided software engineering

CDR critical design review

CMS Code Management System

CSC Computer Sciences Corporation

DEC Digital Equipment Corporation

DFD data flow diagram

GOOD general object-oriented development

GSFC Goddard Space Flight Center

I/O input/output

LSE language-sensitive editor

NASA National Aeronautics and Space Administration

OOD object-oriented design

PDL program design language (pseudocode)

PDR preliminary design review

RSL reusable software library

SDMP software development/management plan

SEL Software Engineering Laboratory

TBD to be determined

References

31

REFERENCES

l. Software Engineering Laboratory, SEL-81-305, Recommended Approach to
Software Development (Revision 3), L. Landis, S. Waligora, F. McGarry, et al.,
June 1992

2. G. Booch, Software Engineering with Ada (Second Edition), Benjamin/Cummings:
Redwood City, CA, 1987

3 P. Coad and E. Yourdon, Object-Oriented Analysis, Yourdon Press: NY, 1991

4 Flight Dynamics Division Code 550, 552-FDD-91/068R0UD0, Ada Efficiency
Guide, E. Booth, August 1992

5. G. Booch, Object-Oriented Design (with Applications), Benjamin/Cummings:
Redwood City, CA, 1991

6. Software Engineering Laboratory, SEL-86-002, General Object-Oriented Software
Development, E. Seidewitz and M. Stark, August 1986

7. Alsys 286/386 UNIX Ada Compilation System, Users Guide (Version 4), Alsys,
Inc., Burlington, MA, 1989

8. Digital Equipment Corporation, AA-DB34J-TE, VAX Language Sensitive Editor
and VAX Source Code Analyzer User Manual, Maynard, MA, September 1990

9. Software Engineering Laboratory, SEL-91-003, Software Engineering
Laboratory (SEL) Ada Performance Study Report, E. Booth and M. Stark, July
1991

10. —, SEL-87-002, Ada Style Guide (Version 1.1), E. Seidewitz et al., May 1987

11. Digital Equipment Corporation, AA-EF88B-TE, VAX Ada Run-Time Reference
Manual, Maynard, MA, May 1989

12. Reference Manual for the Ada Programming Language, ANSI/MIL-STD
1815A, February 1983

